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LIST OF SYMBOLS

C - Input capacitance of measuring device
C1 - Capacitance between probe and unit length of

column
Cs - Capacitance of layer next to probe

e - Charge of an electron
f, g - Bernoulli equation coefficients
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Total current on probe
Saturation current on probe (electrons and
ions respectively)
Electron and ion current on probe
Wave number of ion-sonic wave
Mass of electrons and ions
Amplitude of ion density oscillations
Electron and ion densities
Changes in electron and ion densities from
equilibrium
Surface area of probe
Time
Floating probe potential
Plasma potential
Electron Temperature in volts
see Formula (2)
Coordinate in direction of discharge axis
Probe coordinate
Constants on the order of one
Electrical constant
Length and time of plasma heterogeneity (with
periodic wave, wavelength and period)
Debye length
Frequency of ion-sonic wave
Angular ionic plasma frequency
Oscillating amplitudes
Average with respect to time, for example
g(vt)
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ii



APPLICATION OF THE FLOATING-POTENTIAL PROBE
FOR STUDIES OF LOW-FREQUENCY OSCILLATIONS IN A PLASMA

B. Ye. Dzhakov

1. Introduction -I -

An electric probe connected to a high-impedence input of a /63*

recording device is frequently used as a low-frequency oscilla-

tion detector. Thus, the constant component of the probe current

is sharply limited. Most floating potential measurements are

used for determination of the frequency and phase of oscilla-

tions, in order to confirm the dispersionsequation of some type

of oscillation. In the case of ionic oscillations, for example,

a small electrode capacitively coupled with a plasma [1], a

Langmuir probe with floating potential [2] and a metal ring

surrounding a discharge tube [3] have been used. The use of a

floating potential method in the case of moving striae [4, 5]

has allowed determination of the instantaneous values of the

main parameters of a plasma. Actually, direct recording of the

dependence of electron temperature (or plasma potential) on time

is possible if we use the following expression for floating

probe potential

i. = u zMuT, I <~~~~~~~~~~~ 1 )
where H is a quantity on the order of 1 [5].

Numberslin the margin indicate pagination in the foreign text.
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The present work studies the more general cases of utiliza-

tion of these methods, in particular the possibility for produc-

tion of information on slight oscillations in ion density in the

case of ion-sonic oscillations using the floating potential

method. Little attention is given to capacitive probes, since

they were covered by [6], which was recently published.

2. Limitations of Floating Probe Method in | 
Dynamic Mode . i -

2.1. Consideration of Charge Separation 

Charge separation should, generally speaking, limit the

applicability of the theories of the electron and ion current

to a Langmuir probe [7]. The present work studies only those /64

slight deviations from electrical neutrality which do not dis-

tort the expressions for currents on probe significantly.

Actually, in almost all cases of striae]and ionic sound, the

separation of charges is so slight that the theory of Langmuir

probes remains correct, as was demonstrated in [8].

Let us clarify the question of the floating potential of a

probe immersed in a medium with variable density of positive

and negative charges. The expressions for the components of

current on an ideal, flat probe are

S; u-U I £aeU~ I/2J =Iexp -- =-ev-, v- =(am) 1

4+/ ev M)e
j+ = 4 e +, v+=aeL exp

U-ua ' 2' ' (2)
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where v- and v+ are the normal components of particle velocities

at the boundary of the probe layer.

Equality of electron and ion current corresponds to a float-

ing potential

nu--c.u .I(3)it -Us-hU~- W, 1 (3)

where the quantity G is a measure of the charge separation. All

potentials are read off relative to either electrode with fixed

potential, for example the relative anode.

Where n-=n+=N, G vanishes and relationship (3) is converted

to (1), as would be expected. For slight charge separation

in-=N+4n, n+=N+4n+, 1
we have

G A!n jAn+ I
'_. N _} _l(4)

or, considering Poisson's equation

.f'e (4a)

The use of the theory of probes assumes that the length of

heterogeneities in the plasma A is significantly greater than the

dimensions of the area perturbed by the probe. Suppose now the

perturbation of a space charge propagates as a wave. If the

change in potential caused by this perturbation can be described

(at least formally) by the wave equation, relationship (4a) can
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be written as

Neuvy)2G (5)

2.2. Dynamic Floating Potential -

Connection of the input of the recording device to a probe

is equivalent to connection of capacitance C. It has been 

assumed up to now that the characteristic time of change of par-

ameters of the plasma l/v is more than Ithe charging time of the

capacitance. In practice, probe measurements must be studied in

which the capacitance of the measuring circuit is significant,

but the frequency spectrum of oscillations is limited at the high

frequency end, so that transient processes in the probe layer can

be ignored.

Figure 1 shows an equivalent circuit for this case of meas- /65

urements. The plasma is represented by a voltage generator with

low internal impedence. The layer is described by a nonlinear

ohmic resistance (U-u)/i. This example of an equivalent circuit

is rather general and encompasses many important cases of elec-

trical probes with high do resistance.

.. Layer| The equivalent circuit (Figure 1)

can be studied using the equation
Plasma u i

_ '¢ 1 T rsystem

_~la~~~~ma~~l

'U

~ - --U--:' cnbFigure 1 i--exp u + (6)
I ,xc ir..,I,, (6)

u fIdt,
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which can be written as a single equation

1d---- [- 'exp (H+ G- -+ -)]' (-.i I (6a)

Let us introduce the dimensionless variables y=exp(u/U-),

x=vt. If

iRI OU .IIlyd I
I- .Ydx

then from (6a) we produce the Bernoulli equation

7Y+fA(x)yt+g(x)y=Oj (8)

with coefficients

f(x)=-g(x)exp H+G(x)' (U-x) |'

P-(x,,..
g(X)= -U(x) VC - (9)

The solution of equation (8) gives us the relationship

between the instantaneous values of floating potential and the

plasma parameters U-, U, I+ and G. The measure of separation of

charges G can be determined unambiguously by the derivatives of

the potential, for example, from formula (5). It is more con-

venient to take (8) as the relationship between floating poten-

tial u(t) and the three unknown variables U-(t), U(t) and n+(t),

referring to formulas (2) which relate I+(t) with n+(t) and

U (t).
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2.3. Influence of Capacitance of Layer by Probe on /66
Dynamic Floating Potential

The equivalent circuit, considering the capacitance of the

layer by the probe, becomes as shown on Figure 2. In this case,

the system of equations for the floating potential is

Hi- UL-exIpU- +i++[c.+d-(U-) -( a1 10)
/ (10)

l
C, . . Equation system (10) is

i reduced to Bernoulli equa-

P~la-mLa yerC tion (8) only for the case

iL~~~~_ L when we can consider Cs inde-

~Figure 21| pendent of U-u near the-'Figure 2_/
floating potential, which is

true only for slight oscillations. Near the floating potential,

the capacitance of the layer, according to [9], is given by the

expression

AD J(1

This time, the coefficient of the Bernoulli equation should

be written as

f(x)-= -gl(x)exp Iu+ G(x) UX)

g(X) g(X)+g(IX),

g 1(X)= - +(X) 

)-csc (1.2g%~'J = - v--W~,{Ca c)(
(12)
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Here also we assume slight oscillations of the electron
1,

temperature, satisfying inequality (7).

Recording of plasma oscillations by an electrode with no

contact with the plasma (for example, a metal ring seated on a

discharge tube) occurs only due to the capative coupling with

the plasma. Due to the difference in the structure of the dis-

charge layer near the wall, the value of C for an external
5

electrode is generally different from the value of C for a
5

Langmuir probe.

2.4. Influence of Capacitive Currents from Remote Areas of /67
the Plasma

Capacitive coupling with more distant areas of the dis-

charge may play a significant role for the variable potential

of an unshielded probe. The degree of influence of this

capacitive coupling depends, obviously, on the shape and size

of the probe and its placement. Any quantitative estimates of

the distortion of the probe signal by parasitic capacitive

currents is quite difficult; therefore, we must greatly sim-

plify the task.

Let us seek the probe potential defined by bias currents

alone, in order to compare it with the potential resulting

from conductivity current. The probe is located at distance

z
0
from one end of the plasma column of length 1 (Figure 3) and

is connected to a recording device with input capacitance C.

Let us assume that the cross section of the plasma column is

negligible in comparison to its length. Each element :of the
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column of length dz has a certain capacitance Cl(z-z )dz in rela-
1 0

tion to the probe. C1 represents the capacitance between the

probe and a unit length of the column. The full bias current is

equal to the sum of the currents of all such elements. In order

to estimate the probe potential determined by this current, we

can use the equation system

zo+C.-

li(z, )[U(Z t)= OU' 4Zo t) 

du(zo. t). I(z 
dt i~o 0'

(13)

The limits of integration of (13)
0o _ ColUmn] dz Z/ 

- Coumn] |dzetermined by the values of C

1

- ProbeJ | and C2' may differ, depending on

the specific problem studied.
Figure 3J

U(z, t) is the potential along

the plasma column, which we will consider fixed. In other

words, we will look upon the plasma as a voltage generator. We

can with equal success fix the distribution of charge density

in the column, which is equivalent to a current generator.

Actually, these two methods of analysis are not independent,

since the distributions of plasma parameters along the column

are not arbitrary, but rather are interrelated by Poisson's

equation. This factor has a significant influence on the course

of the solution, as can be seen from the example studied in 2.4.
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3. Foundation and Discussion of Floating Probe Method for a
Plasma with Low-Frequency Oscillations

3.1. Foundation of the Floating Probe Method for Moving
Striae/

The static method of the floating probe [4, 5] was used to

study traveling layers in inert gasses; the oscillating fre-

quency was not over 10 kHz, the dynamic input capacitance of the

electrometric apparatus used was on the order of 100 pF. Based

on an ion current value on the probe of 10- 5 A and a floating

potential of about 0.5 V, it is not difficult to show that under

the conditions of [4] we can ignore the term in equation (6a)

proportional to du/dt1 . Therefore, the probe potential is

determined by (3). Recording of currents I-(t) and I+(t) by an

oscillograph showed that there is a definite, slight phase

shift between them. Consequently, G may differ significantly

from zero only at the head of a stria. Significant deviations-

in the distribution of velocities of electrons from the equi-

librium distribution have been found in this area, so that near

the area of the space charge, probe measurements are unreliable

for another reason.

We must note that the temperature "profiles" in a stria,

both those indicated by the volt-ampere probe characteristics

measured at various points in the stria and those taken from the

floating potential oscillograms, coincide within the limits of

error of the experiments [4].

1
And, apparently, the effect related to capacitance.
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3.2. Dynamic Floating Potential in the Case of Ion-Sonic
Oscillations

Let us study unidimensional ion density waves of low ampli-

tude

4+(t)=nsin (at- kz), N ' /. (14)

As we know, in the case of ion-acoustical waves, the

remaining parameters of the plasma can be written as

-=const,
U()an--(/) =A v,

UU-)
v~ U(t)=-;; [an+(t)-an-(J. (15)0 ~~~~~~~~(15)

It follows from the first relationship of (15) that inequality

(7) is fulfilled. Keeping in mind (5), (15) is reduced to the

expressions

U(t) = Uosin (wot--z |
(t)=- (o sin (wt-h;,.

2NGo= ;j+;2 N-'
GO+UO==y-

(16)

Let us study a Langmuir probe placed at the coordinate

origin z=O. We substitute (15) into (9), using (2) for deter-

mination of I +. The Bernoulli equation is solved by the /69

standard method. During the course of the solution,
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exp[n/N(sin 2fx-P cos 2rx)] is replaced by l+[n/N(sin 2wx-

-P cos 27x), which introduces an error of about 0.5% for n/N=1%
2

.

If we limit our calculations to the case of periodic solutions

(which is equivalent to the boundary condition), the solution

becomes simple. Ignoring the "overtones," the amplitudes of

which are proportional to (n/N)2 , (n/N)3, etc., we find the

following final expression for the/dynamic floating potential:

u(t) = X-(A sin t- B cos t), 7)

where

P

·~~~~~ _
A = --~ B-F (18)

P= -= =g(2ax). (19)

We note that in concluding these equations it was assumed

that the probe does not change the structure of the wave, does

not excite standing waves in the column, etc. The values of N,

U- and I+=l/4eN(aeU-/M)1/2 exp(-l/2) can be easily determined from

the static volt-ampere probe characteristics ..or estimated

using tabular data on a positive column. Thus, based on formulas

2
We note that the value of P(19) is on the order of even in the
most unfavorable cases, for example I+=10-5, w/2w=104 Hz,
C=10-1 0 F.
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(17), (18) and (19), we can determine the instantaneous values of

ion density if the dynamic floating potential is measured using a

high input impedence.

It is not difficult to see that where wC+0, formula (17)

becomes

u(t)=G(t)U-+U(t),

as would be expected. We can conclude from this that the input

capacitance of the device introduces a certain phase shift to

the observed signal, depending on the input impedence of the

device.

3.3. Influence of Capacitance of Layer in the Case of
Ion Sound

Calculation of the floating potential considering the

capacitance of the layer next to the probe in the case of a

plasma with ion-acoustic oscillations is performed just as above

(see 3.2), but formulas (12) should be used to find f(x) andi

g(x) in this case. As a result, the floating pontential U(t) is

determined by the same expression (17), but coefficients A and B

are changed:

~-!-"-'(1+l+P2+P$S P...A 1 -''(1+ +P ') B= 1+p(1+Q), /

0)(C+c 5)qt c+c3 OAM
(20)

The effect of layer capacitance causes a change both of the

phase and of the amplitude of the floating potential oscillations.
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3.4. Bias Currents on the Probe in the Case of /70
Periodic Structure of the Space Charge

Let us return to analysis of the influence of capacitive

currents from remote areas of the plasma (see 2.4), assuming

periodic distribution of charges moving along the column. The

force lines leaving positive charges in the column are closed to

the negative charges in the column without moving far from the

column. At any moment in time the lines closing through the

probe cannot begin at a distance from the probe greater than a

half wave length of the periodic structure. This determines the

integration limits in (13), assuming 1=~2=X/2.

Due to electrostatic induction, positive and negative

charges appear on the probe, but the summary charge on the probe

does not change with time. With the model studied, only in the

case of some stable asymmetry of charges can a non-zero signal be

expected, resulting from the bias currents from neighboring

charge areas (near the probe). Asymmetry will develop in the dis-

tribution of the space charge if the probe is near the end of a

periodic structure, for example z0<X/2.

Another effect always present to some extent during probe

measurements in striae consists of distortions of amplitude, form

and phase of the striae passing near the probe. Observations

using a rotating mirror (stroboscope) or photomultiplier have

shown that each stria "adheres" to the probe for a certain time,

yielding its place suddenly to the next stria. The intensity of

oscillations of radiated light also changes near the probe.
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Suppose the probe distorts the oscillations of plasma para-

meters quite strongly--by a value on the order of the oscilla-

tions themselves. This is equivalent to the assumption that the

oscillations exist only on one side of the probe, i.e., all the

lines of force close at the probe. This estimate of the value of

u(zO, t) will be quite high, but still may yield certain useful

information.

The use of this rough model of the phenomena at the probe

allows us to note a path to the solution of equation system (13).

In order to estimate the value of Cl(z-z0)dz, a column sector of

length dz should be replaced by a point charge or a distribution

of charges of more complex configuration. The relationships pro-

duced forU(z0 , t) depend strongly on the method of approximation

of column element of length dz. Apparently, this is true only

for very rough and unreliable methods of estimation; therefore,

due to their roughness, it does not seem useful to write out all

of the expressions produced.

If the distribution of potential along the column is fixed

as (14), the various approximations for calculation of the capa-

citance between the probe and a plasma element (Figure 3) yield

for the floating potential

\ u(zo, t) = uoF(kzo, cot-kzo) / (21)

where u0 is the amplitude of oscillations of the floating poten-

tial. The phase of the floating potential oscillations, as we

can see from (21), depends on the position of the probe in



relationship to the column, which is considered by function F,

which is always on the order of one. In the simplest case

(approximation of point charges) it is cos (wt-kz0). In other /71
0

cases, it is expressed by a combination of sines and cosines, and

of integral sines and integral cosines of the quantities kz
0
and

wt-kz0 .

It is also important to note that the various approximations

for Cl(z-z0)dz yield approximately the same result for the oscil-

lating amplitudes of the floating potential. In the point charge

approximation

U 1

(22)

The frequency of oscillations w is not included in the

expression for uO, This is essentially a reflection of the fact

that the probe is a capacitive divider in the model used.

Estimates were performed for the same electrode placed in a

plasma column with periodic structure, which served as a model

of a discharge with striae or ion sound. The values produced for

the floating potential depend on the values of C and w. The

signal on the probe resulting from bias currents alone amounts to

0.1--10% of the signal resulting from conductivity currents alone

for most cases encountered in practice (C=5.10-11-10-9 F,

wJ/2r=103-106Hz). 
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4. Conclusions

We can see from the preceding analysis that when a single

floating probe is used to study low frequency oscillations, we

must consider deviations of the plasma from electrical neutrality,

and in many cases the capacitive currents as well. However, it

has been shown that the method of [5] is applicable for the study

of fluctuations in electron temperature and plasma potential in

moving striae. The difficulties of the method are clearly seen

in the case of ionic oscillations of the plasma. Artificially

increasing the impudence of the probe helps to overcome the harm-

ful influence of capacitive currents. Therefore, probes with

more complex design [6, 10] are free of these shortcomings. We

find that an ordinary Langmuir probe in combination with a spe-

cial electrometric apparatus (floating grid amplifier, see [5])

can be used to study ion-sonic oscillations. The dynamic float-

ing potential recorded is related by simple formula (16) to the

instantaneous value of ion density in the plasma. By introducing

a suitable variable condensor with known capacitance to the cir-

cuit (in parallel to the input capacitance of the recording

device), we can estimate not only the amplitude but also the

phase of oscillations of ion density. The dynamic input capaci-

tance of the electrometric tube must be known in advance. The

phase of oscillations can also be determined by comparison of the

signals of the the probes.
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